If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+7x-141=0
a = 2; b = 7; c = -141;
Δ = b2-4ac
Δ = 72-4·2·(-141)
Δ = 1177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{1177}}{2*2}=\frac{-7-\sqrt{1177}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{1177}}{2*2}=\frac{-7+\sqrt{1177}}{4} $
| 2(6m+3)=2(2m-4/2) | | -16-7x=-2x-7x | | 3x+4+5x=-12 | | 6^x=9 | | 3x-6x=-12 | | 6x+x=238 | | -3=4-7x=18 | | 9(z-1)-5z=-11 | | 12=7+x/4 | | -3(2x-5)+3=-6x+18 | | 8(+-3)+4t=6(2t+1)-10 | | -m/15=-4 | | 3x-46=2x | | 6x+9=(x-1) | | 2x/7x=5/4 | | 4(x+8)=28x= | | m/5-7/5=m/1-3/1 | | 9x+17-6=9x+16 | | 4(x+8)=8x= | | 3(x+3)-5x=0 | | p+48=5p+32 | | m/5-7/5=m-3 | | -4(2t-2)+3t=8t-4 | | 3t+39=9t-69 | | 4x+6=12x+-2 | | R(X)=X/(X-1)(x+2) | | (w-4/9(2/3)=-4/5 | | 4/5t=3/4 | | 5(z-1)-2z=23 | | -6x-6+3=-18 | | 9x-4/5=6 | | (12x+1)/3=5x-1 |